Инструкции. Прошивка. Программы. Интернет. Навигация
Поиск по сайту

Управление RGB светодиодом с компьютера через USB порт (virtual COM port). Управление светодиодной лентой с компьютера

Управление освещением со смартфона – это последняя ступень в интеллектуальных системах «умный дом» после управления с помощью пультов ДУ и панелей. Разберемся, зачем нужна эта функция и как она работает.

Зачем нужно управлять светом через телефон?

Мы привыкли включать и выключать свет при помощи обычных выключателей. В системах «умный дом» уже давно используются более «продвинутые» способы – пульты ДУ и панели. Они позволяют контролировать освещение сразу во всем доме из одной точки. С появлением функции контроля света через Wi-Fi владельцы домов и квартир могут управлять светильниками и вне дома.

Причин, чтобы управлять светом через смартфон, несколько:

  • Можно использовать собственный смартфон внутри дома, не прибегая к поиску пульта ДУ;
  • Можно создавать «эффект присутствия» в доме, находясь за его пределами – в охранных целях;
  • Можно настраивать нужный сценарий света, уходя с работы, чтобы прийти в освещенный дом.

Такая функция особенно удобна тем, кто имеет ограничения в передвижении, связанные с состоянием здоровья. Также это обеспечит комфорт родителям – например, когда маленький ребенок проснулся ночью и испугался темноты.

Как это работает?

Контроль за освещением в этой схеме выполняется через Wi-Fi сигнал. Чтобы настроить управление светом через смартфон, потребуются устройства:

  1. Сам смартфон, в которое устанавливается специальное приложение;
  2. Исполнительное устройство – к нему подключаются светильники;
  3. Wi-Fi роутер, осуществляющий передачу данных между смартофоном и исполнительным устройством.

Все просто. Пользователь задает команду через приложение на смартфоне – включить или выключить свет, поменять яркость, цветовую температуру и т.д. Сигнал через Wi-Fi принимается исполнительным устройством, которое реализует команду пользователя.

Если смартфон и роутер есть практически у каждого, то исполнительное устройство приходится приобретать отдельно. Как правило, таким устройством становятся контроллеры. Они подбираются по типу осветительных приборов, которые используются в помещении. Например, предназначен для управления цветной RGB-подсветкой на основе светодиодных лент. Он поставляется сразу с пультом ДУ в комплекте, и может работать как от пульта, так и от смартфона или планшета, на которых установлено приложение.

Очень интересен контроллер-шлюз который является шлюзом между сетью Wi-Fi и RF-сигналом для управления контроллерами серии SMART компании Arlight.

Если вам интересно создание в собственном доме или офисе такой системы освещения, . Мы поможем рассчитать и подобрать все компоненты, необходимые для создания подсветки с управлением через Wi-Fi сигнал.

Данный проект посвящен тому, как сделать светодиодную подсветку, управляемую с соседней комнаты, чтобы не вставать с дивана. Светодиодная RGB-подсветка одинаково хорошо украшает как маленький аквариум, так и большую комнату.

Можно засветить разными цветами баню от RGB ленты на Arduino. Создать, так сказать, баню на микропроцессорном управлении от Arduino.

Всего лишь понадобятся для сборки RGB-подсветки такие компоненты:

  1. Bluetooth модуль HC-05 для беспроводной связи с Arduino.
  2. Плата Arduino nano, mini, Uno с микропроцессором ATmega 8, ATmega 168, ATmega 328.
  3. Светодиодная лента RGB, при необходимости во влагозащитном исполнении IP65 или без него.
  4. Смартфон с Android как пульт управления RGB-подсветкой.
  5. Полевые MOSFET транзисторы, такие как P3055LD, P3055LDG, PHD3355L, но лучше с выводами для закрепления в монтажных отверстиях. Биполярные транзисторы работают хуже .
  6. Резисторы 10 кОм, 0.125 Вт - 3 штуки.

Немного теории про подключение RGB ленты к Arduino

Нельзя подключить светодиодную полоску напрямую к плате Arduino. Светодиодная лента светиться от 12 В, тогда как микропроцессору нужно для работы всего 5 В.

Но, самая главная проблема в том, что выходы микропроцессора не имеют достаточной мощности для питания целой ленты светодиодов. В среднем метровой длины светодиодная полоса потребляет 600 мА. Такой ток точно выведет из строя плату Arduino.

Используемые ШИМ выходы микропроцессора не имеют достаточной мощности, чтобы засветить RGB ленту, но всё-таки их можно использовать для снятия сигнала управления.

Для развязки по питанию, в качестве ключей, рекомендуется использовать транзисторы. Лучше использовать полевые MOSFET транзисторы: им для открытия нужен мизерный ток на «затвор», к тому же они имеют большую мощность в сравнении с биполярными ключами такого же размера.

RGB ленты к Arduino

На электромонтажной схеме на управление лентой задействованы ШИМ-выхода: 9 (красный), 10 (зеленый), 11 (голубой).

Три резистора по 10 кОм, 0.125 Вт повешены на «затвор» каждого транзистора.

Плюс от блока питания 12 В (красный провод) идет напрямую на RGB ленту.

Минус от блока питания 12 В (черный провод) распределяется по «истокам» полевых транзисторов.

«Сток» каждого транзистора связан с отдельным контактом ленты: R, G, B. Рекомендуется для удобства при подключении использовать провода красного, зеленого, голубого цвета.

Контакт заземления GND платы Arduino следует посадить на минус входного питания.

Сама плата Arduino Uno запитывается от отдельного сетевого адаптера. Для Arduino nano, mini потребуется собрать простенький источник питания на интегральном стабилизаторе 7805.

Подключение Bluetooth модуля HC-05:

  • VCC - 5V (питание +5 В);
  • GND - GND (земля, общий);
  • RX - TX на Arduino nano, mini, Uno;
  • TX - RX на Arduino nano, mini, Uno;
  • LED - не используется;
  • KEY - не используется.

Приведенный ниже эскиз программы является универсальным для управления как одним светодиодом, так и светодиодной полосой. Главное оставить нужные строчки, а ненужные удалить или сделать комментариями в косых черточках.

Unsigned long x; int LED = 9; // зеленый подключен к 9 пину int LED2 = 10; // синий подключен к 10 пину int LED3 = 11; // красный подключен к 11 пину int a,b,c = 0; void setup() { Serial.begin(9600); Serial.setTimeout(4); pinMode(LED, OUTPUT); pinMode(LED2, OUTPUT); pinMode(LED3, OUTPUT); } void loop() { if (Serial.available()) { x = Serial.parseInt(); if (x>=0 && x<=255) { a = x; // для RGB ленты //a = 255-x; // для светодиода analogWrite(LED, a); } if (x>=256 && x<=511) { b = x-256; // для RGB ленты //b = 511-x; // для светодиода analogWrite(LED2, b); } if (x>=512 && x<=767) { c = x-512; // для RGB ленты //c = 767-x; // для светодиода analogWrite(LED3, c); } /* Serial.println(x); Serial.println(a); Serial.println(b); Serial.println(c); */ } }

Если понадобиться подключить один RGB светодиод, тогда есть электромонтажная схема его подключения.

Установка приложения на телефон

Скачиваем приложение с коротким названием RGB на телефон. .

После установки запускаем приложение по иконке.

Кликаем по надписи

Находим в списке установленный Bluetooth модуль HC-05.

При наличии связи вместо надписи будет отображаться адрес и название установленного модуля Bluetooth.

Ну, вот и всё, управление RGB подсветкой налажено!

Вот видео-пример работы нашего проекта:

GPS часы на Arduino Биометрический замок – Схема и сборка ЖК дисплея

Управление RGB светодиодом с компьютера через USB порт (virtual COM port). Управление светодиодной лентой с компьютера

Управление светодиодной RGB лентой через arduino

В число осветительных приборов давно вошли многоцветные светодиодные ленты RGB. Для управления этими устройствами используется RGB-контроллер. Но, кроме него, в последние годы применяется плата Arduino.

Ардуино – принцип действия

плата Arduino

Плата Ардуино – это устройство, на котором установлен программируемый микроконтроллер. К нему подключены различные датчики, органы управления или encoder и, по заданному скетчу (программе), плата управляет моторами, светодиодами и прочими исполнительными механизмами, в том числе и другими платами Ардуино по протоколу SPI. Контроль устройства может осуществляться через дистанционный пульт, модуль Bluetooth, HC-06, Wi-Fi, ESP или internet, и кнопками. Одни из самых популярных плат – Arduino Nano и Arduino Uno, а также Arduino Pro Mini – устройство на базе микроконтроллера ATmega 328

Внешний вид Arduino Pro MiniВнешний вид Arduino UnoВнешний вид Arduino micro

Программирование осуществляется в среде Ардуино с открытым исходным кодом, установленным на обычном компьютере. Программы загружаются через USB.

Но выходы рассчитаны на ток 20 – 40 мА с напряжением 5 В. Этого хватит для питания индикаторного RGB-светодиода или матричного светодиодного модуля 32×32 мм. Для более мощной нагрузки это недостаточно.

Для решения подобной проблемы во многих проектах нужно подключить дополнительные устройства:

  • Реле. Кроме отдельных реле с напряжением питания 5В есть целые сборки с разным количеством контактов, а также со встроенными пускателями.
  • Усилители на биполярных транзисторах. Мощность таких устройств ограничена током управления, но можно собрать схему из нескольких элементов или использовать транзисторную сборку.
  • Полевые или MOSFET-транзисторы. Они могут управлять нагрузкой с токами в несколько ампер и напряжением до 40 – 50 В. При подключении мосфета к ШИМ и электродвигателю или к другой индуктивной нагрузке, нужен защитный диод. При подключении к светодиодам или LED-лампам в этом нет необходимости.
  • Платы расширения.
к содержанию

Подключение светодиодной ленты к Ардуино


подключение светодиодной ленты к Arduino

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Arduino Nano могут управлять не только электродвигателями. Они используются также для светодиодных лент. Но так как выходные ток и напряжение платы недостаточны для прямого подключения к ней полосы со светодиодами, то между контроллером и светодиодной лентой необходимо устанавливать дополнительные приспособления.

Через реле

Подключение через реле

Реле подключается к устройству на цифровой выход. Полоса, управляемая с его помощью имеет только два состояния - включенная и выключенная. Для управления red-blue-green ленточкой необходимы три реле. Ток, который может контролировать такое устройство, ограничен мощностью катушки (маломощная катушка не в состоянии замыкать большие контакты). Для подсоединения большей мощности используются релейные сборки.


Подключение с помощью транзистора

Для усиления выходного тока и напряжения можно использовать биполярный транзистор. Он выбирается по току и напряжению нагрузки. Ток управления не должен быть выше 20 мА, поэтому подается через токоограничивающее сопротивление 1 – 10 кОм.

Транзистор лучше применять n-p-n с общим эмиттером. Для большего коэффициента усиления используется схема с несколькими элементами или транзисторная сборка (микросхема-усилитель).

Кроме биполярных, для управления полосами используются полевые транзисторы. Другое название этих приборов – МОП или MOSFET-transistor.

Такой элемент, в отличие от биполярного, управляется не током, а напряжением на затворе. Это позволяет малому току затвора управлять большими токами нагрузки – до десятков ампер.

Подключается элемент через токоограничивающее сопротивление. Кроме того, он чувствителен к помехам, поэтому выход контроллера следует соединить с массой резистором в 10 кОм.

С помощью плат расширения


Подключение Arduino с помощью плат расширения

Кроме реле и транзисторов используются готовые блоки и платы расширения.

Это может быть Wi-Fi или Bluetooth, драйвер управления электродвигателем, например, модуль L298N или эквалайзер. Они предназначены для управления нагрузками разной мощности и напряжения. Такие устройства бывают одноканальными – могут управлять только монохромной лентой, и многоканальными – предназначены для устройств RGB и RGBW, а также лент со светодиодами WS 2812.

К содержанию

Пример программы


Arduino и светодиодная лента

Платы Ардуино способны управлять светодиодными конструкциями по заранее заданным программам. Их библиотеки можно скачать с официально сайта, найти в интернете или написать новый sketch (code) самому. Собрать такое устройство можно своими руками.

Вот некоторые варианты использования подобных систем:

  • Управление освещением. С помощью датчика освещения включается свет в комнате как сразу, так и с постепенным нарастанием яркости по мере захода солнца. Включение может также производиться через wi-fi, с интеграцией в систему «умный дом» или соединением по телефону.
  • Включение света на лестнице или в длинном коридоре. Очень красиво смотрится диодная подсветка каждой ступеньки в отдельность. При подключении к плате датчика движения, его срабатывание вызовет последовательное, с задержкой времени включение подсветки ступеней или коридора, а отключение этого элемента приведет к обратному процессу.
  • Цветомузыка. Подав на аналоговые входы звуковой сигнал через фильтры, на выходе получится цветомузыкальная установка.
  • Моддинг компьютера. С помощью соответствующих датчиков и программ цвет светодиодов может зависеть от температуры или загрузки процессора или оперативной памяти. Работает такое устройство по протоколу dmx 512.
  • Управление скоростью бегущих огней при помощи энкодера. Подобные установки собираются на микросхемах WS 2811, WS 2812 и WS 2812B.
к содержанию

Видеоинструкция

lampaexpert.ru

Схема подключения и управление светодиодной лентой с помощью Arduino

Arduino - компьютерная платформа, используемая при построении простых систем автоматики, небольшая плата со встроенным микропроцессором и оперативной памятью. Управление светодиодной лентой через Arduino - один из способов ее применения.

Процессор ATmega управляет программой-скетчем, контролируя многочисленные дискретные выводы, аналоговые и цифровые входы/выходы, ШИМ-контроллеры.

Принцип действия Arduino

«Сердце» платы Arduino - микроконтроллер, к которому подключаются датчики, управляющие элементы. Заданная программа (называется «скетч») позволяет управлять электродвигателями, светодиодами в лентах и других осветительных приборах, даже используется для контроля над другой платой Arduino через протокол SPI. Контроль осуществляется при помощи пульта ДУ, Bluetooth-модуля или сети Wi-Fi.

Для программирования используется открытый исходный код на ПК. Для загрузки программ управления можно пользоваться USB-коннектором.

Принцип управления нагрузкой через Arduino

На плате Arduino есть порты двух типов - цифровые и аналоговые. Первый имеет два состояния - «0» и «1» (логические ноль и единица). При подключении светодиода к плате в одном состоянии он будет светиться, в другом - нет.

Аналоговый вход, по сути, - ШИМ-контроллер, регистрирующий сигналы частотой около 500 Гц. Такие сигналы подаются на контроллер с настраиваемой скважностью. Аналоговый вход позволяет не просто включать или отключать управляемый элемент, но и изменять значение тока (напряжения).

При прямом подключении через порт используйте слабые светодиоды, добавляя к ним ограничительный резистор. Более мощная нагрузка выведет его из строя. Для организации управления светодиодной лентой и другим осветительным прибором примените электронный ключ (транзистор).

Подключение к Arduino

Прямое подключение светодиодной ленты к Arduino уместно только в случае применения слабых LED-диодов. Для светодиодной ленты между ней и платой необходимо установить дополнительные электротехнические элементы.

Через реле

Подключите реле к плате Arduino через цифровой выход. Управляемая полоса может иметь одно из двух состояний - включения или выключения. Если нужно организовать управление RGB-лентой, понадобятся три реле.

Значение тока, контролируемое данным устройством, ограничивается мощностью катушки. Если мощность слишком мала, элемент не сможет замыкать большие контакты. Для наиболее высоких мощностей примените релейные сборки.

С помощью биполярного транзистора

Если нужно повысить ток или напряжение на выходе, подключите биполярный транзистор. При его выборе ориентируйтесь на ток нагрузки. Ток управления не превышает 20 мА, поэтому добавьте резистор на 1 – 10 кОм для ограничения тока за счет сопротивления.

Обратите внимание! В идеале нужно пользоваться транзистором n-p-n типа на базе общего эмиттера. Если требуется большое усиление, примените транзисторную сборку.

С помощью полевого транзистора

Вместо биполярных транзисторов для управления светодиодными лентами возьмите полевые (сокращенно - МОП). Разница между ними связана с принципом управления: биполярные изменяют ток, полевые - напряжение на затворе. Благодаря этому небольшой ток затвора управляет большой нагрузкой (десятками ампер).

Обязательно добавьте к схеме резистор для ограничения тока. Из-за высокой чувствительности к помехам к выходу контроллера подключается масса резистора на 10 кОм.

С помощью плат расширения

Если нет желания использовать реле и транзисторы, можно купить целые блоки - платы расширения. К ним относятся Wi-Fi, Bluetooth, эквалайзер, драйвер и т. д., которые необходимы для управления нагрузкой разных мощностей и напряжений. Это могут быть как одноканальные элементы, которые подойдут монохромным лентам, так и многоканальные (для управления цветными RGB-лентами).

Различные программы

Библиотеки с программами для платы Arduino можно загрузить с официального сайта или найти в Интернете на других информационных ресурсах. Если есть навыки, можете даже самостоятельно написать скетч-программу (исходный код). Для сбора электрической цепи не требуется каких-то специфичных знаний.

Варианты применения системы под управлением Arduino:

  1. Освещение. Наличие датчика позволит задать программу, в соответствии с которой свет в комнате либо появляется сразу, либо плавно включается параллельно заходу солнца (с увеличением яркости). Для включения можно использовать Wi-Fi, телефон и интеграцию в систему «Умный дом».
  2. Освещение коридора и лестничных площадок. Arduino позволит организовать освещение каждой детали (к примеру, ступени) отдельно. Добавьте в плату датчик движения, чтобы адресные светодиоды загорались последовательно в зависимости от того места, где зафиксировано движение объекта. Если движения нет, диоды будут гаснуть.
  3. Светомузыка. Воспользуйтесь фильтрами и подайте на аналоговый вход звуковые сигналы, чтобы на выходе организовать светомузыку (эквалайзер).
  4. Модернизация компьютера. Некоторые датчики позволят создать зависимость цвета светодиодов от температуры процессора, его загрузки, нагрузки на оперативную память. Используется протокол DMX 512.

Микросхемы Arduino расширяют возможности применения монохромных и многоканальных (RGB) светодиодных лент. Помимо слияния различных цветов, образования сотен тысяч оттенков сможете создать неповторимые эффекты - затухание при заходе солнца, периодическое включение/выключение при фиксации движения и многое другое.

Управление светодиодной лентой через Arduino - схемы плавного включения и выключения освещения

220.guru

Управление RGB светодиодом с компьютера через USB порт

Управление RGB светодиодом с компьютера

// Для управления цветом светодиода используем 3 ШИМ порта

int bluePin = 9;

int greenPin = 10;

int redPin = 11;

// Команды управления светодиодом. Цвета и выключение

String COLOR_RED = "red";

String COLOR_BLUE = "blue";

String COLOR_GREEN = "green";

String COLOR_OFF = "off";

// Инициализация последовательного порта. Устанавливаем скорость 9600 бит/c

Serial.begin(9600);

// Инициализируем выходы для нашего RGB светодиода

pinMode(redPin, OUTPUT);

pinMode(greenPin, OUTPUT);

pinMode(bluePin, OUTPUT);

// В переменную color считываем команду с цветом от ПК

// Проверяем, доступны ли данные с ПК

int check = Serial.available();

// если есть, то считываем как строку

if (check > 0) {

color = Serial.readString();

// Сравниваем поступившую команду с описанными ранее и включаем необходимый цвет на RGB LED

if (COLOR_RED.equalsIgnoreCase(color)) {

setColor(255, 0, 0);

} else if (COLOR_GREEN.equalsIgnoreCase(color)) {

setColor(0, 255, 0);

} else if (COLOR_BLUE.equalsIgnoreCase(color)) {

setColor(0, 0, 255);

} else if (COLOR_OFF.equalsIgnoreCase(color)) {

setColor(0, 0, 0);

} else if(check > 0){

// Если команда не распознана, сообщаем пользователю подсказку.

Serial.println("Send command is bad! Send please \"RED\" \"GREEN\" \"BLUE\" or \"OFF\"!");

// Функция включения необходимого цвета на нашем RGB светодиоде

void setColor(int red, int green, int blue) {

analogWrite(redPin, red);

analogWrite(greenPin, green);

analogWrite(bluePin, blue);

gearise.ru

Управление светодиодными источниками света по протоколам SPI и DMX

Эта статья посвящена особому классу управляемых светодиодных источников света, к которому относятся пиксельные светодиодные ленты «Бегущий огонь», управляемый «гибкий неон» и флеш-модули. В них, как и в обычных многоцветных RGB лентах и модулях, используются трехцветные светодиоды с красным (Red), зеленым (Green) и синим (Blue) цветом свечения.

Принципиальное отличие заключается в том, что помимо светодиодов, непосредственно на ленту или внутрь модулей, устанавливаются микросхемы управления. Благодаря этому, появляется возможность управлять не всеми светодиодами одновременно, а каждым светодиодом или группой из нескольких светодиодов отдельно. Такая группа называется пиксель. Количество светодиодов в пикселе зависит от типа ленты. Светодиодные ленты и модули с напряжением питания 12В обычно имеют по 3 RGB светодиода в одном пикселе, с питанием 24В – по 6 светодиодов на пиксель. В светодиодных лентах и модулях с напряжением питания 5В, управление обычно осуществляется каждым светодиодом отдельно, причем микросхема управления может быть встроена в корпус самого RGB светодиода.

Большинство контроллеров позволяют устанавливать длину подключенной ленты и выбирать последовательность RGB каналов на ленте (RGB, RBG, BGR и т.д.). Это необходимо чтобы цвет, заданный в программе, соответствовал воспроизводимому цвету, красный цвет был красным, зеленый – зеленым и синий - синим.

Цифровой сигнал, сформированный пиксельным контроллером, поступает на микросхему, установленную на ленте или во флеш- модуле, и представляющую собой специализированный микроконтроллер, который принимает цифровой сигнал, декодирует его и управляет яркостью и цветом свечения светодиодов. Часто эти микроконтроллеры называют «чип» или «драйвер». В данной статье, для однозначного понимания, будем называть их «драйвер».

Тип используемых драйверов обязательно указывается в параметрах светодиодных лент или флеш-модулей. Знать этот тип необходимо для того, чтобы подобрать и правильно настроить контроллер, который будет управлять лентой или модулями.

Большинство контроллеров могут работать с несколькими типами драйверов. Перечень драйверов, с которыми работает тот или иной контроллер, приводится в его технических характеристиках, а также в программном обеспечении к контроллеру, если таковое используется для создания собственных световых программ. Поскольку ведется постоянная работа по совершенствованию программного обеспечения и контроллеров, списки совместимых драйверов периодически пополняются.

Применяемые драйверы разделяются на два принципиально разных класса. В соответствии с этим на два класса можно разделить и светодиодных ленты, флеш-модули и «гибкий неон».

  • Первый класс (более обширный и чаще используемый) - это драйверы использующие цифровой интерфейс SPI (Serial Peripheral Interface - последовательный периферийный интерфейс),
  • Второй – драйверы, использующие цифровой протокол управления DMX (Digital Multiplex – цифровое мультикплексирование).

Оба класса драйверов имеют свои преимущества, о которых расскажем далее. Рассмотрим более подробно оба типа используемых протоколов.

Использование протокола SPI.

Особенностью светодиодных лент и модулей, использующих протокол управления SPI, является последовательная передача данных от пикселя к пикселю по всей длине подключенной цепочки. Цифровая управляющая последовательность формируется контроллером и подается на первый пиксель. Драйвер этого пикселя «забирает» первую принятую информации себе, а оставшуюся цифровую последовательность передает на следующий пиксель. Второй драйвер также «отрезает» себе начальную часть информации и передает оставшееся на третью микросхему, и т.д. При таком способе передачи нет необходимости присваивать микросхемам адреса. Адресом, по сути, является место расположения пикселя в общей последовательности.

Управление по протоколу SPI может осуществляться с использованием двух сигнальных проводов (DATA и CLK) или только одного (DATA). Для лент и модулей с двумя сигналами управления характерна более стабильная работа на высоких скоростях обмена и, соответственно меньшая задержка распространения информации и более высокая частота обновления. Сколько проводов управления используется в конкретном случае, зависит от типа драйверов на светодиодной ленте или в модулях. Ниже приведена таблица с основными параметрами SPI драйверов, используемых в оборудовании Neoncolor.

Тип драйвера ТМ1804 ТМ1812 WS2801 WS2811 WS2812 LPD6803 UCS1903 TLS3001
Использование в оборудовании Ленты/ модули Ленты Модули Ленты/ модули Ленты/ модули Модули Модули Модули
Напряжение питания лент и модулей 12/24В 12В 5/12В 5/12/24В 5/12/24В 5/12В
Количество RGB светодиодов в пикселе для лент 1 или 3 шт. 1, 2 или 3 шт. - 3 шт. 1 шт. - - -
Сигналы управления DATA DATA DATA, CLK DATA DATA DATA, CLK DATA DATA
Исполнение микросхемы В отдельном корпусе В отдельном корпусе В отдельном корпусе В отдельном корпусе Встроена в светодиод В отдельном корпусе В отдельном корпусе В отдельном корпусе
Количество обслуживаемых драйвером пикселей 1 (3 канала) 4 (12 каналов) 1 (3 канала) 1 (3 канала) 1 (3 канала) 1 (3 канала) 1 (3 канала) 1 (3 канала)
Количество цветов 16 млн 16 млн 16 млн 16 млн 16 млн 32768 16 млн 4096

С появление новых драйверов, список используемых микросхем пополняется.

Ниже приведены структурные схемы SPI лент и их подключение к контроллеру.

Рис.1. Структурная схема SPI светодиодной ленты с двумя линиями управления (DATA и CLK)

Рис.2. Структурная схема SPI светодиодной ленты с одной линией управления (DATA)

Использование протокола DMX.

Отличительные особенности светодиодных лент и флеш-модулей, использующих DMX управление – параллельная подача сигнала управления на все модули. Как видно на структурной схеме, приведенной на рис.3., цифровой сигнал с выхода контроллера подается одновременно на все драйверы.

Рис.3. Структурная схема DMX светодиодной ленты (сигнал ADR используется только при записи адресов DMX каналов)

В такой системе выход из строя одного драйвера не вызывает отказ всех последующих пикселей. Правда, чтобы информация попала именно в тот драйвер, которому она предназначена, драйверы должны иметь свой персональный адрес. Если драйверы в последовательной цепочке поменять местами, поменяются и пикселы в программе, в результате световой эффект будет нарушен.

В оборудовании компании Neoncolor используются современные DMX драйверы WS2821. Справедливости ради, стоит отметить, что эти драйверы используют протокол DMX, но не используют полноценный симметричный интерфейс, характерный для работы систем стандарта DMX. Для передачи сигнала используется сигнал DATA+ и не используется DATA-.

DMX ленты, модули и «гибкий неон» поставляются с записанными при производстве DMX адресами. По умолчанию, адресация пикселей каждой катушки ленты (цепочки модулей или катушки «гибкого неона») начинается с 1-го адреса и нумеруется по порядку до последнего пикселя. Если в одну линию соединяется несколько катушек или отрезков, требуется произвести запись адресов заново. Для этого вначале выполняются все соединения отрезков ленты или модулей, а затем производится запись адресов. При этом адреса автоматически последовательно записываются во все подключенные пиксели, начиная от ближайшего к контроллеру. Такая запись исключает дублирование адресов и обеспечивает правильное выполнение световых эффектов.

Для записи адресов в DMX драйверы используются специализированные редакторы адресов, например, DMX-WS2821. Некоторые пиксельные контроллеры, такие как DMX K-1000D или DMX K-8000D, имеют встроенный редактор адресов.

При записи адресов используется провод, обозначенный ADR (ADI, ADIN). После выполнения записи, при воспроизведении световых программ, вход ADI драйверов не используется. Если Ваш контроллер не имеет встроенного редактора адресов и не имеет выхода для подключения провода ADI, этот провод должен быть соединен с общим проводом GND, что предотвратит воздействие на него внешних помех и наводок.

Подводя итог сравнению цифровых интерфейсов SPI и DMX, используемых при управлении светодиодными пикселями, приведем положительные стороны обоих.

Плюсы светодиодных лент и модулей, использующих интерфейс SPI:

  • нет необходимости записывать адрес и, соответственно, приобретать редактор адресов;
  • нет привязки пиксела к месту установки в общей цепи, т.е. перестановка модулей или отрезков ленты не приводит к нарушению рисунка воспроизводимой программы;
  • возможность подключения на одну линию более 1024 пикселей, при условии поддержки такого количества контроллером и при продуманном и качественно выполненном монтаже.

Плюсы светодиодных лент, модулей и «гибкого неона», использующих интерфейс DMX:

  • совместимость с оборудованием, использующим стандартный протокол управления DMX512, например, DMX пульты или оборудование системы MADRIX.
  • при отказе одного пикселя, все последующие пиксели продолжают работать, картинка не искажается.

При управлении от оборудования, работающего по стандартному протоколу DMX512 , на одну DMX шину может быть подключено максимум 170 пикселей (170 пикселей по 3 адреса, итого 510 адресов). При использовании специализированных пиксельных контроллеров для светодиодных лент и флеш-модулей, это количество зависит от типа самого контроллера и обычно составляет 1024 пикселя на один порт.

В заключении статьи приведем схему подключения нескольких светодиодных лент «Бегущий огонь» (Рис.4.) и дадим несколько рекомендаций, которые помогу правильно спроектировать и смонтировать систему.

Рис.4. Соединение нескольких светодиодных лент.

  • При подключении пикселей соблюдайте направление передачи данных, обозначенное стрелками, нанесенными на ленте или флеш-модулях. Стрелки должны указывать в направлении от контроллера. Также, можно ориентироваться на маркировку, нанесенную на ленту или модули. Контакты с маркировкой DI или DIN – вход, подключаются к выходу контроллера, контакты с маркировкой DO или DOUT – выход, подключаются к следующим пикселям.
  • Никогда не подавайте на ленту напряжение, превышающее номинальное напряжение питания, например, подключение ленты с напряжением питания 5В к источнику питания с выходным напряжением 12В неминуемо приводит к выходу ленты из строя.
  • Будьте внимательны при подключении. Подача напряжения питания на вход данных или ошибка с полярностью подключения выводов питания («плюс» и «минус» источника питания) может привести к выходу ленты из строя.
  • Не подключайте последовательно питание двух и более лент (5 или 2.5 м, в зависимости от типа лент). Лента и «гибкий неон» поставляются на катушках и всегда имеют максимально допустимую длину. При соединении последовательно нескольких лент, провода DATA и GND подключаются с выхода одной ленты ко входу другой, а питание подается на каждую ленту отдельно. Если для питания нескольких лент используется один мощный источник питания, от него к каждой ленте необходимо провести отдельный кабель. При этом следует учитывать, что ток потребления ленты может достигать больших значений и это приводит к падению напряжения на питающих проводах. Помимо изменения цвета свечения, такое падение может вызывать сбои в управлении пикселями. Сечение питающего кабеля рассчитывается так же, как и для стандартных светодиодных лент, исходя из потребляемой мощности ленты и длины кабеля. Для расчета можно воспользоваться калькулятором сечения провода на нашем сайте. Часто, вместо одного мощного источника питания, бывает удобнее использовать отдельные блоки небольшой мощности для каждой ленты, разместив их в непосредственной близости к ленте. При таком подключении проблем, вызываемых падением напряжения, не возникает.
  • При использовании лент высокой плотности и с низким напряжением питания (5 вольт), подавайте питание на ленту с обоих концов. На таких лентах, из-за большого потребляемого тока и падения напряжения на дорожках ленты, цвет свечения светодиодов в начале и конце ленты может отличаться. Из-за недостатка напряжения питания на конце ленты могут появиться сбои управления светодиодами. Эти эффект особенно выражены при включении статического белого цвета на всех светодиодах. В таком режиме потребляемый лентой ток максимальный. На некоторых контроллера, для устранения подобного эффекта, автоматически снижается яркость свечения на белом цвете при питании контроллера напряжением 5 вольт.
  • Напряжение на управляющих линиях DATA и CLK не зависит от типа контроллера и его напряжения питания. На всех контроллерах оно может принимать только два значения – 0 или 5 вольт (уровни TTL). Из этого следует, что не обязательно питать контроллер и ленту от источников питания с одинаковым выходным напряжением. Например, можно использовать ленту с питанием 5 вольт и контролер с напряжением питания 12 вольт. Главное, чтобы выходное напряжение блока питания ленты соответствовало подключаемой ленте, а выходное напряжения блока питания контроллера соответствовало подключаемому контроллеру. Если напряжения питания контроллера и ленты одинаковые, можно использовать один общий источник питания.
  • Для передачи сигналов управления от контроллера к ленте используйте экранированный кабель. Возможно применение кабеля для компьютерных сетей UTP (витая пара). Длина кабеля управления между контроллером и лентой не должна превышать 10 м. При необходимости передать сигнал управления на большее расстояние (до 200м), используйте конверторы сигнала TTL в RS485 со стороны контроллера RS485 в TTL со стороны ленты. Для передачи и приема сигнала по кабелю можно использовать конвертер Th3010-485.
  • При количестве пикселей в системе более 1024, используйте контроллеры с несколькими выходными портами. Равномерно распределяйте пиксели между портами контроллера.

www.neoncolor.ru

Подключение светодиодных rgb-лент к контроллеру и управление lead подсветкой пультом

Самыми современными осветительными приборами являются светодиоды: светодиодные лампы, прожектора или модули. Хотя есть конструкции, в которых элементы соединены в полосу, – это светодиодные ленты. Они производятся различной яркости и цвета, есть и многоцветные ленты RGB (R – red «красный», G – green, «зелёный», B – blue, «синий»), позволяющие менять цвет ленты при помощи RGB-контроллера.


Применение многоцветной ленты

RGB лента, благодаря возможности менять цвет и яркость, используется во многих местах и дизайнерских решениях:

  • Основное или вспомогательное освещение комнаты. В сочетании с центральной люстрой делает освещённость более равномерной, а самостоятельно создает романтическое освещение или в сочетании с пультом с соответствующими возможностями обеспечивают цветомузыкальные эффекты;
  • В спальне, коридоре и на кухне обеспечивает дежурное и полное освещение. Переключать режимы можно вручную, по таймеру или датчиком движения;
  • Подсветка витрины магазина. Оттенок света выбирается по желанию оформителя;
  • Моддинг компьютера. Цвет может зависеть от температуры или загрузки процессора;
  • Фитолампа. Это удобный, но невыгодный вариант – используются только два цвета: красный и синий.

Конструкция led-ленты RGB

Светодиодная лента – это гибкая полоса, на которой расположены две, а на led-лентах RGB – четыре токопроводящие полоски. Между этими полосками расположены группами три последовательно включённых светодиода и токоограничивающее сопротивление. Элементы схемы используются формы SMD – surface mounted device (прибор, монтируемый на поверхность). Отличаются такие конструкции по размеру светодиодов, выраженному в 0,1 мм.

В многоцветных led-лентах устанавливаются элементы SMD5050 или 5*5мм. В отличие от светодиодов меньшего размера, в них три светодиода в одном корпусе. В монохромных конструкциях эти элементы включены параллельно, а в RGB-конструкциях каждый вывод подключается к своей токопроводящей полоске и имеет свой цвет свечения. Исключение составляют устройства, в которых в каждом элементе установлен ШИМ-контроллер. В таких аппаратах всего две токопроводящие полоски. Управление осуществляется при помощи цифрового сигнала.

Кроме обычных RGB-лент есть устройства RGBW. В них, кроме многоцветных, есть белые светодиоды. С их помощью достигается повышенная яркость и большее количество оттеков света.

Управление цветом

В многоцветных полосах управление яркостью каждого цвета осуществляется по отдельности. Этим достигается большое количество оттенков. При включении всех светодиодов на полную мощность лента начинает светиться белым цветом.

Для управления применяется RGB контроллер. Он может оснащаться пультом управления разного типа:

  • Встроенный или выносной на проводах. Применяется там, где не требуется постоянная регулировка цвета, например, в витринах магазинов;
  • С ИК-пультом. Самые простые и недорогие. Недостаток в том, что такой пульт работает только в пределах прямой видимости;
  • С радиопультом. Позволяет управлять светом даже из соседней комнаты, но при утере пульта приходится менять устройство;
  • С Wi-Fi и Bluetooth. Позволяет управлять при помощи мобильного телефона. Могут использоваться в системе «умный дом».

Кроме регулировки цвета всей ленты одновременно, есть устройства, в которых каждый светодиод оснащён ШИМ-контроллером, регулирующим цвет своего светодиода. В таких конструкциях возможны различные цветосветовые эффекты: переливы цвета, бегущие огни, звёздный дождь и другие.


RGB контроллер

Управление led-лентой при помощи Ардуино

Один из способов управления многоцветными светодиодными устройствами – это платы Ардуино. В таких платах установлен программируемый микроконтроллер, к которому подключаются различные датчики и выходные устройства. По заданной программе такие устройства управляют цветом и яркостью свечения светодиодов. Они оснащаются аналоговыми выходами для управления обычной ргб-лентой, и цифровыми – для ленты с ШИМ-контоллерами.

Питание ленты RGB

Самое распространённое напряжение питания =12В, но встречаются полосы на 24, 110 и 220В. Они отличаются количеством соединённых последовательно светодиодов в группе.

Перед тем, как подключить rgb-ленту, нужно определить необходимую мощность блока питания, учитывая 20% запас. Питание таких устройств осуществляется от блоков питания разной мощности:

  • До 25Вт (2А). Такие устройства похожи на блок питания планшета или мобильного телефона, включаются в розетку;
  • До 100Вт (9А). Это приборы в пластиковом корпусе. Их можно спрятать в шкафу или в нише, в гипсокартонной стене;
  • Свыше 100Вт. Это аппараты в металлическом корпусе со встроенными кулерами. При установке необходимо предусмотреть доступ воздуха. При работе шумят, поэтому в доме целесообразнее вместо одного мощного устройства использовать несколько маломощных.

Сечение проводов для подключения светодиодных лент

При подключении таких приборов блок питания необходимо располагать рядом с лентой. Это связано с падением напряжения в подсоединяемых проводах.

Например, для подключения 5 метров ленты RGB SMD5050, напряжением 12В, мощностью 14,4Вт/метр, общей мощностью 72Вт и током, по формуле I=P/U=72Вт/12В=6А достаточно сечения провода 0,5 мм². Но при длине провода 10 метров падение напряжения составит 4В, поэтому необходимо выбрать сечение не менее 4 мм².

Информация. Для подключения устройств, находящихся на расстоянии друг от друга, используются отдельные блоки питания и RGB-повторители.

Подключать ленты последовательно допускается не более 5 метров. При большей длине растёт падение напряжения на токоведущих полосках, снижение яркости к концу, а также их нагрев. Это приведёт к выходу устройства из строя.


Подключение ленты RGB

Подключение проводов

Для подключения на токопроводящих полосках есть контактные площадки – расширения, к которым производится подключение проводов. Они присоединяются двумя способами: пайкой или коннекторами.

Пайка проводов

Для подключения полосы при помощи пайки необходимы гибкие многожильные провода сечением не более 0,5 мм². Провода большего сечения могут оборвать контактные площадки.

Флюс используется только нейтральный. Порядок действий следующий:

  1. если лента покрыта слоем силикона, нужно снять его, не повреждая токопроводящий слой;
  2. паяльником мощностью не больше 15Вт залудить контактные площадки;
  3. отрезать куски проводов необходимого размера;
  4. снять изоляцию с провода на 5 мм и залудить его;
  5. отрезать кусок термоусадочной трубки длиной 25 мм и надеть её на ленту;
  6. припаять провода;
  7. надеть термоусадочную трубку на место пайки и прогреть строительным феном или зажигалкой.

Внимание! Кислоту использовать нельзя – она может разрушить токопроводящие полоски или вызвать короткое замыкание.

Соединение коннекторами

Кроме пайки, подключение производится при помощи специальных коннекторов. Это менее надёжный, но более простой и быстрый способ. Кроме того, при подключении или ремонте ленты, установленной в труднодоступном месте, это единственный способ.

Коннекторы производятся разной формы: прямые, угловые, Т-образные, с проводами, для подключения к сети и без, для соединения отрезков полосы между собой.


Коннектор RGB

Ремонт ленты

При выходе из строя отдельных участков полосы нет необходимости менять всю ленту целиком – достаточно заменить повреждённый участок. Это делается при помощи коротких, 10-15 мм, кусочков проводов или соединительными коннекторами.

Степень водозащищенности

Ленты производятся с разной степенью защиты от неблагоприятных воздействий окружающей среды:

  • IP20/IP33. Это открытые полосы. Применяются в сухих местах, в которых исключено попадание брызг воды. Это подсветка подвесного потолка, компьютерной клавиатуры или замена настольной лампы;
  • IP65. Покрыты силиконом только с лицевой стороны. Используются для подсветки плинтусов, рабочей зоны на кухне и других местах, в которых возможны брызги, но исключено попадание струй воды;
  • IP67/IP68. Покрыты силиконом полностью. Используются в любых условиях, в том числе в воде: в бассейнах и аквариумах.

Виды водозащищенности ленты

Многоцветная светодиодная лента RGB – это новый современный вид освещения, позволяющий украсить интерьер разнообразными световыми эффектами.

Видео

elquanta.ru

WS2811: микросхема для управления трехцветным RGB-светодиодом | hardware

Микросхема WS2811 компании Worldsemi является трехканальным драйвером для управления светодиодами стабилизированным током, при этом обеспечивается 256 градаций яркости по каждому каналу (обычно это R красный, G зеленый, B синий, RGB). В этой статье представлен перевод даташита "WS2811 Signal line 256 Gray level 3 channel Constant current LED drive IC".

Яркость светодиодов, подключенных к WS2811, управляется последовательным цифровым кодом, который формируется микроконтроллером. Данные при этом передаются всего лишь по 1 проводу. Цифровой сигнал управления проходит сквозь микросхему WS2811, так что несколько микросхем WS2811 могут быть объединены в длинную цепочку с сохранением возможности управлять каждым светодиодом в цепочке по отдельности.

[Особенности микросхемы WS2811]

Рабочее напряжение выходного порта до 12V. Имеется встроенный регулятор напряжения питания VDD, так что можно питать микросхему даже от 24V, если последовательно подключить гасящий напряжение резистор Может быть установлено до 256 уровней яркости, и при этом частота сканирования составляет не менее чем 400 Гц. Имеется встроенный узел восстановления формы входного сигнала данных, что обеспечивает отсутствие накапливания искажений на линии сигнала. Имеется встроенный узел сброса, который сбрасывает микросхему при включении и восстановлении питания. Сигнал от одной микросхемы к другой может быть передан через один сигнальный провод. Любые две точки между приемником и передатчиком сигнала могут находиться друг от друга на расстоянии более 10 м без необходимости дополнительных усилителей. При скорости обновления 30 fps (30 кадров/сек) модель каскадирования на низкой скорости позволяет соединить в цепочку не менее 512 точек, на высокой скорости можно соединить не менее 1024 точек. Данные передаются на скоростях до 400 и 800 Kbps (килобит/сек).

WS2811 могут применяться для создания декоративного освещения с помощью светодиодов (LED), а также для видеоэкранов либо информационных табло как внутри помещения, так и снаружи.

[Общее описание WS2811]

WS2811 имеет 3 выходных канала специально для управления LED. В микросхеме имеется встроенный продвинутый цифровой порт данных с возможностью усиления сигнала и восстановления его формы. Также в микросхему встроен точный внутренний генератор и программируемый источник постоянного выходного тока, рассчитанный на рабочее напряжение до 12V. Для снижения пульсаций напряжения питания 3 выходных канала разработаны с функцией задержки включения (delay turn-on function).

Микросхема использует режим обмена данными NZR (Non-return-to-zero, код без возврата к нулю ). После сброса при подаче питания (power-on reset), порт DIN принимает данные от внешнего контроллера, при этом первая микросхема собирает первые 24 бита данных, и затем передает их во внутреннюю защелку данных, при этом у остальных данных восстанавливается форма с помощью узла восстановления и усиления, и эти остальные данные передаются следующей в цепочке микросхеме через порт DOUT. После прохождения каждой микросхемы количество бит в общем потоке уменьшается каждый раз на 24 бита. Технология автоматического восстановления передаваемого сигнала данных устроена таким образом, что количество каскадируемых микросхем ограничивается только скоростью передачи и требуемой частотой обновления яркости светодиодов.

Данные, защелкнутые в микросхему (24 бита), определяют скважность сигнала выходных портов OUTR, OUTG, OUTB, управляющих светодиодами - применяется PWM (ШИМ, широтно-импульсная модуляция), так что от скважности импульсов выходных портов зависит яркость каждого канала. Все микросхемы в цепочке синхронно отправляют принятые данные на каждый сегмент, когда поступит сигнал сброса на входной порт DIN. Далее будут снова приниматься новые данные после завершения сигнала сброса. До поступления нового сигнала сброса управляющие сигналы портов OUTR, OUTG, OUTB остаются неизменными. Микросхема передает имеющиеся данные PWM на порты OUTR, OUTG, OUTB после приема сигнала сброса низкого уровня, еще в течение 50 мкс.

Часто микросхема WS2811 встраивается прямо в корпус RGB-светодиода (это решение применяют в популярных светодиодных лентах), такой светодиод называется 5050 RGB LED.

Отдельно микросхема WS2811 поставляется в корпусах SOP8 и DIP8.

В таблице ниже показано назначение ножек WS2811.

Мнемоника Описание функции вывода
1 OUTR Выходной сигнал PWM для управления яркостью красного светодиода (Red).
2 OUTG Выходной сигнал PWM для управления яркостью зеленого светодиода (Green).
3 OUTB Выходной сигнал PWM для управления яркостью синего светодиода (Blue).
4 GND Земля, общий провод, минус питания.
5 DOUT Выход сигнала данных (для каскадирования микросхем).
6 DIN Вход сигнала данных.
7 SET Установка низкоскоростного режима работы микросхемы (при подключении SET к VDD) или высокоскоростного режима (когда ножка SET никуда не подключена).
8 VDD Плюс напряжения питания.
Параметр Мнемоника Значение Ед. изм.
Напряжение питания VDD +6.0 .. +7.0 V
Выходное напряжение VOUT 12 V
Входное напряжение VI -0.5 .. VDD+0.5 V
Рабочая температура Topt -25 .. +85 oC
Температура хранения Tstg -55 .. +150 oC

Примечание: если напряжения на выводах превысят максимальное значение, то это может необратимо повредить микросхему.

[Электрические характеристики]

[Динамические характеристики]

TA = -20 .. +70oC, VDD = 4.5 .. 5.5V, VSS = 0V, если не указано что-то другое.

Параметр Мнемоника Условие MIN NOM MAX Ед. изм.
Рабочая частота Fosc1 - - 400 - КГц
Fosc2 - - 800 - КГц
Задержка передачи (время распространения сигнала) tPLZ CL=15 пФ, DIN->DOUT, RL=10 кОм - - 300 нс
Время спада tTHZ CL=300 пФ, OUTR/OUTG/OUTB - - 120 мкс
Скорость передачи данных FMAX Скважность 50% 400 - - кбит/с
Входная емкость CI - - - 15 пФ

[Интервалы времени для режима низкой скорости (Low Speed mode)]

В этой таблице показаны интервалы времени, которыми кодируются биты данных 0 и 1, и сигнал сброса.

Примечание: для режима высокой скорости все интервалы времени уменьшаются в 2 раза, но время сброса (reset time) остается неизменным.

Диаграммы поясняют принципы кодирования и передачи данных.

Микроконтроллер посылает данные для микросхем D1, D2, D3 и D4. Микросхемы соединены в цепочку, и данные, которые проходят через них (DIN -> DOUT), восстанавливаются и усиливаются. При этом от последовательности данных каждый раз отрезается по 24 бита данных, которые предназначены именно этой микросхеме после прохождения массива данных для всех микросхем следует сигнал сброса RES (импульс лог. 0 с длительностью не менее 50 мкс). После этого принятый уровень яркости (24 бита на микросхему) передается на выходы PWM OUTR, OUTG, OUTB. Вот так составлена последовательность 24 бит, которая кодирует уровни яркости каналов OUTR, OUTG, OUTB микросхемы (старший MSB бит идет первым):

R7 R6 R5 R4 R3 R2 R1 R0 G7 G6 G5 G4 G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B0

[Стандартные схемы включения]

В этом примере каждый канал в светодиоде RGB управляется постоянным током 18.5 мА, яркость светодиода при этом определяется скважностью PWM (ШИМ). Благодаря стабилизации тока при снижении напряжения питания светодиоды сохраняют свою яркость и цветовую температуру. Для того, чтобы пульсации напряжения питания не влияли на работу микросхемы, рекомендуется использовать фильтрующую цепочку, состоящую из последовательного резистора номиналом на более 100 Ом и блокирующего конденсатора емкостью порядка 0.1 мкФ. Для предотвращения отражений сигнала и для обеспечения возможности горячего соединения в цепь сигнала должен быть включен последовательный резистор номиналом в 33 Ом.

Как и в предыдущем примере, светодиоды управляются стабилизированным током 18.5 мА. R1 используется для нормальной работы внутреннего стабилизатора напряжения микросхемы, его номинал должен быть 2.7 кОм. Обычно на красном светодиоде всегда падает меньше напряжение при том же самом токе, чем на светодиодах других цветов, и красный светодиод светится ярче. Поэтому канал OUTR должен иметь дополнительный резистор RR, сопротивление которого можно рассчитать по формуле:

12 - (3 * VLEDR)RR = ------------- кОм 18.5

В этой формуле VLEDR равно падению напряжения на одном светодиоде красной группы (обычно равно 1.8V .. 2V).

[Как устроена светодиодная RGB-лента]

На фото показана обычная влагозащищенная светодиодная RGB лента, построенная на основе технологии микросхем WS2811 (WS2811 waterproof LED Strip) длиной 5 метров, модель GE60RGB2811C. Обычно такая лента поставляется намотанной на бобину, вместе с крепежом для монтажа на стену. Для питания ленты нужен источник стабилизированного напряжения 5V 18A (потребление мощности 18 Вт на 1 метр). На концах ленты установлены коннекторы вход папа (сюда заходит цифровой сигнал и должно быть подключено питание) и выход мама (отсюда выходит цифровой сигнал и здесь также может быть подключено питание), благодаря чему ленты можно соединять друг с другом для увеличения общей длины.


Лента собрана на ленте из тонкого текстолита (гибкая двухсторонняя печатная плата) и устроена так, что ленту можно обрезать в любом месте для получения нужного размера.

Для управления RGB светодиодной лентой используют специальные контроллеры, которые программируются от компьютера через USB или с помощью карты SD. Контроллер может задавать сложный автоматический алгоритм управления лентой, некоторые могут даже работать как цветомузыка - с помощью встроенного микрофона анализируют звук и в такт мелодии управляют цветом ленты.

Светодиодная лента - это устройство производящее световой поток и работающее на основе полупроводникового прибора - светодиода. Они появились не так давно, но даже за такой короткий промежуток времени нашли широкое применение в организации подсветок, а иногда и в качестве основного освещения. За счёт хорошей герметичности применять их можно в зависимости от типов как для наружной, так и для внутренней подсветки. Не все марки светодиодной ленты могут применяться для освещения на улице и во влажных помещениях, а только те, которые герметично залиты силиконом.

Светодиодные ленты выпускаются производителями по пять метров в длину и могут содержать, чаще всего, от 60 до 120 диодов на один метр, излучающих свет. Ширина ленты составляет всего 8 мм, а высота не больше 3 мм. Это даёт возможность дизайнерам выбрать светодиодную ленту и устанавливать её даже в самых труднодоступных местах, в мебели, в торцах гипсокартонных потолков, а автомобилистам в любом доступном месте где есть возможность вывести два провода для питания. Ленты делятся на два типа светодиодов:

  1. Однокристальные;
  2. Многокристальные.

Многокристальные светодиоды зачастую идут в так называемых RGB-лентах, которые светить могут не одним цветом, а несколькими. R - красный (red), G - зеленый (green), B - синий (blue). Также есть возможность соединять эти цвета, получая дополнительные цветовые гаммы и оттенки. Если выполнять это вручную то лучше воспользоваться тумблерами или выключателями, но это не совсем удобно. Для регулировки существуют специальные электронные микроконтроллеры. Такой контроллер управления зачастую оснащён дистанционным пультом управления, с помощью которого можно менять не только мощность освещения, но и переход от холодного спектра до тёплого. С пультом управления, работающим на расстоянии, можно с лёгкость производить все манипуляции.

Правильное питание светодиодов, возможно только от постоянного напряжения небольшой величины, а ленты на их основе рассчитаны на напряжение 12 вольт. Ток в цепи светодиодной ленты будет зависеть от:

  1. Длины;
  2. Мощности одного светодиода или же метра ленты.

Поэтому выбирать блок питания для всей световой установки нужно зная эти основные параметры.

Управление светодиодной лентой и светодиодными светильниками

Для того чтобы управлять светодиодной лентой, а конкретнее её яркостью существуют специальные электронные устройства диммеры или светорегуляторы. Диммер подключается после блока питания или в отдельных случаях может быть установлен в нём.

Управление светодиодным освещением на основе ленты можно выполнять с помощью таких устройств регулирования яркости:

  • Поворотного механического регулятора;
  • Кнопочного управления светодиодами;
  • Сенсорного управления светодиодами, зачастую они имеют удобный жидкокристаллический дисплей;
  • С пультом управления (от инфракрасного сигнала и радиосигнала);
  • Через электронные устройства по каналу Wi-Fi.

Все такие устройства регулирования яркости работают по принципу регулировки силы тока или с помощью довольно сложной широтно-импульсной модуляции (ШИМ). Устройства на основе ШИМ довольно компактные и стабильные. Стоит заметить что для создания многоцветной системы эффектов применяются двух- и трёхканальные диммеры зачастую с пультом управления.

Светодиодные светильники и компактные лампы на основе диода можно разделить на регулируемые яркость излучаемого светового потока (диммируемые) и нерегулируемые (недиммируемые). Управляемые светодиодные светильники могут регулироваться с помощью обычных регуляторов яркости, предназначенных для ламп накаливания. Для того чтобы правильно подобрать, на упаковке должна быть специальная маркировка.

Хороший пример для такого регулируемого источника качественного светового потока является светодиодный светильник saturn. Он изготавливается и предлагается в паре с пультом управления (ПДУ) и множеством удобных функций регулировки яркости и теплоты излучаемого света. Подключается управляемый светодиодный светильник Сатурн к сети 220 вольт и в нём уже установлен и драйвер, и управляющий электронный диммер. Такой светильник очень часто используется как люстра или управляемый светодиодный светильник. Кстати, даже для LED телевизоров и больших панелей, устанавливаемых для рекламы, тоже применяется система управления светодиодным экраном, основанная на такой же только более сложной электронной регулировке.

Как правильно паять светодиодную ленту

Для того чтобы правильно спаять части светодиодной ленты, нужно запомнить, что разрезать её можно только в специальных указанных на ней местах. При пайке ленты стоит пользоваться маломощным паяльником не более 40 Вт. Контакты присоединяемых участков должны быть тщательно зачищены от силикона или же лака, и залужены паяльником.

Естественно, что все эти работы выполняются при полном отключении светодиодной ленты от блока питания, или же блока питания от сети 220 вольт. Нельзя соединить многокристальную RGB-ленту и ленту где установлены однокристальные светодиоды. Светодиодные ленты должны быть одинаковы по структуре светодиода, а желательно и правильно выбрать их по потребляемой мощности метра её длины. Спайка производится с помощью залуженных многожильных медных проводов. Сечение стоит подбирать по току или мощности всей ленты. После пайки рекомендуется залить места соединения клеем или силиконом, для герметизации и защиты от короткого замыкания.

Как проверить исправность светодиода в фонарике

Для того чтобы проверить почему не светится фонарик, стоит сразу начать с источника напряжения (аккумулятора или батареек). Если же сменные источники электрического тока исправны, а светодиодный фонарик всё-таки не работает нужно проверит сам источник экономичного светового потока - светодиод. Для этого понадобится мультиметр или же любой омметр.

Светодиод - это электронный полупроводниковый прибор, который, как и обычный диод, проводит ток только в одном направлении. Поэтому, прикоснувшись щупами мультиметра к контактам светодиода в одну сторону, он покажет низкое сопротивление и может даже незначительно излучать свет, а в обратном направлении покажет большое сопротивление в несколько сотен кОм. Если результаты проверки показывают, что в обе стороны диод показывает малое сопротивление, то он пробит, если в обе стороны бесконечность, то это свидетельствует об обрыве внутри светодиода или о разрушении его полупроводникового перехода. Значит, светодиод неисправен и требует замены. утилизация светодиода не нужна в отличие от газоразрядных источников света.

Перед покупкой светодиодной ленты или же диммера к ней, а также регулируемой светодиодной лампы, стоит проконсультироваться у продавца или же менеджера по продаже, о совместимости диммера и источника света.

Видео управление светодиодной лентой с телефона

Для управления этими устройствами используется RGB-контроллер. Но, кроме него, в последние годы применяется плата Arduino.

Ардуино – принцип действия

плата Arduino

Плата Ардуино – это устройство, на котором установлен программируемый микроконтроллер. К нему подключены различные датчики, органы управления или encoder и, по заданному скетчу (программе), плата управляет моторами, светодиодами и прочими исполнительными механизмами, в том числе и другими платами Ардуино по протоколу SPI. Контроль устройства может осуществляться через дистанционный пульт, модуль Bluetooth, HC-06, Wi-Fi, ESP или internet, и кнопками. Одни из самых популярных плат – Arduino Nano и Arduino Uno, а также Arduino Pro Mini – устройство на базе микроконтроллера ATmega 328


Внешний вид Arduino Pro Mini
Внешний вид Arduino Uno
Внешний вид Arduino micro

Программирование осуществляется в среде Ардуино с открытым исходным кодом, установленным на обычном компьютере. Программы загружаются через USB.

Принцип управления нагрузкой через Ардуино


управление Arduino

На плате есть много выходов, как цифровых, имеющих два состояния — включено и выключено, так и аналоговых, управляемых через ШИМ-controller с частотой 500 Гц.

Но выходы рассчитаны на ток 20 – 40 мА с напряжением 5 В. Этого хватит для питания индикаторного RGB-светодиода или матричного светодиодного модуля 32×32 мм. Для более мощной нагрузки это недостаточно.

Для решения подобной проблемы во многих проектах нужно подключить дополнительные устройства:

  • Реле. Кроме отдельных реле с напряжением питания 5В есть целые сборки с разным количеством контактов, а также со встроенными пускателями.
  • Усилители на биполярных транзисторах. Мощность таких устройств ограничена током управления, но можно собрать схему из нескольких элементов или использовать транзисторную сборку.
  • Полевые или MOSFET-транзисторы. Они могут управлять нагрузкой с токами в несколько ампер и напряжением до 40 – 50 В. При подключении мосфета к ШИМ и электродвигателю или к другой индуктивной нагрузке, нужен защитный диод. При подключении к светодиодам или LED-лампам в этом нет необходимости.
  • Платы расширения.

Подключение светодиодной ленты к Ардуино


подключение светодиодной ленты к Arduino

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Arduino Nano могут управлять не только электродвигателями. Они используются также для светодиодных лент. Но так как выходные ток и напряжение платы недостаточны для прямого подключения к ней полосы со светодиодами, то между контроллером и светодиодной лентой необходимо устанавливать дополнительные приспособления.

Через реле


Подключение через реле

Реле подключается к устройству на цифровой выход. Полоса, управляемая с его помощью имеет только два состояния — включенная и выключенная. Для управления red-blue-green ленточкой необходимы три реле. Ток, который может контролировать такое устройство, ограничен мощностью катушки (маломощная катушка не в состоянии замыкать большие контакты). Для подсоединения большей мощности используются релейные сборки.

С помощью биполярного транзистора


Подключение с помощью транзистора

Для усиления выходного тока и напряжения можно использовать биполярный транзистор. Он выбирается по току и напряжению нагрузки. Ток управления не должен быть выше 20 мА, поэтому подается через токоограничивающее сопротивление 1 – 10 кОм.

Транзистор лучше применять n-p-n с общим эмиттером. Для большего коэффициента усиления используется схема с несколькими элементами или транзисторная сборка (микросхема-усилитель).

С помощью полевого транзистора

Кроме биполярных, для управления полосами используются полевые транзисторы. Другое название этих приборов – МОП или MOSFET-transistor.

Такой элемент, в отличие от биполярного, управляется не током, а напряжением на затворе. Это позволяет малому току затвора управлять большими токами нагрузки – до десятков ампер.

Подключается элемент через токоограничивающее сопротивление. Кроме того, он чувствителен к помехам, поэтому выход контроллера следует соединить с массой резистором в 10 кОм.

С помощью плат расширения


Подключение Arduino с помощью плат расширения

Кроме реле и транзисторов используются готовые блоки и платы расширения.

Это может быть Wi-Fi или Bluetooth, драйвер управления электродвигателем, например, модуль L298N или эквалайзер. Они предназначены для управления нагрузками разной мощности и напряжения. Такие устройства бывают одноканальными – могут управлять только монохромной лентой, и многоканальными – предназначены для устройств RGB и RGBW, а также лент со светодиодами WS 2812.

Пример программы


Arduino и светодиодная лента

Платы Ардуино способны управлять светодиодными конструкциями по заранее заданным программам. Их библиотеки можно скачать с официально сайта , найти в интернете или написать новый sketch (code) самому. Собрать такое устройство можно своими руками.

Вот некоторые варианты использования подобных систем:

  • Управление освещением. С помощью датчика освещения включается свет в комнате как сразу, так и с постепенным нарастанием яркости по мере захода солнца. Включение может также производиться через wi-fi, с интеграцией в систему «умный дом» или соединением по телефону.
  • Включение света на лестнице или в длинном коридоре. Очень красиво смотрится диодная подсветка каждой ступеньки в отдельность. При подключении к плате датчика движения, его срабатывание вызовет последовательное, с задержкой времени включение подсветки ступеней или коридора, а отключение этого элемента приведет к обратному процессу.
  • Цветомузыка. Подав на аналоговые входы звуковой сигнал через фильтры, на выходе получится цветомузыкальная установка.
  • Моддинг компьютера. С помощью соответствующих датчиков и программ цвет светодиодов может зависеть от температуры или загрузки процессора или оперативной памяти. Работает такое устройство по протоколу dmx 512.
  • Управление скоростью бегущих огней при помощи энкодера. Подобные установки собираются на микросхемах WS 2811, WS 2812 и WS 2812B.

Видеоинструкция